Investigation of Double Sulfates of Potassium and Rare Earth Elements with Composition K*RE*(SO₄),†

P. A. DEGTIAREV, A. N. POKROVSKII, L. M. KOVBA, AND F. M. KORYTNAIA

Department of Inorganic Chemistry, Moscow State Univerity, Moscow, USSR

Received December 20, 1976; in revised form June 9, 1977

We have established the formation of anhydrous double sulfates of $KRE(SO_4)_2$ for the entire series of rare earth elements, which crystallize in five different structural types. The parameters of the unit cells of the double sulfates $KRE(SO_4)_2$ (RE = La-Tb) have been determined. The thermal stability and character of decomposition of the double sulfates of potassium and rare earth elements have been investigated.

Despite the large number of investigations devoted to the composition and properties of double sulfates of potassium and the rare earth elements, all as a rule are devoted not to the anhydrous compounds but to the hydrates. An analysis of the $K_2SO_4 - RE_2(SO_4)_3 - H_2O$ (RE = La-Ho) systems has shown that for the entire series of rare earth elements, the formation of double sulfates $KRE(SO_4)$, $\cdot nH_2O$ is characteristic (1-7). According to (3, 5, 8) anhyddouble rous sulfates of composition $K_5RE(SO_4)_4$ (La-Sm) can be obtained from aqueous solutions. Previously we have made an X-ray analysis of double sulfates of composition $K_3RE(SO_4)_3$ (RE = Sm-Lu, Y) (9). The purpose of the present work was to ascertain the possibility of synthesizing anhydrous double sulfates of potassium and rare earth elements with composition $KRE(SO_4)$, (RE = La - Lu, Y).

Mixtures of stoichiometric quantities of the initial sulfates, which had first been annealed at 500°C to drive off the water of crystallization, were carefully and thoroughly ground and sintered in air at 500°C for 200–300 h. The formation of an individual phase was

Copyright © 1977 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain checked by X-ray in a Guiner–DeWolf camera using CuKa radiation. Thermographic and thermogravimetric analyses were carried out on a differential analyzer OD-103 and a Kurnakov pyrometer FRU-64 (platinum– platinorhodium thermocouple; accuracy of temperature measurement, $\pm 10^{\circ}$ C).

Data from the X-ray analysis of the specimens obtained verified the formation of the double sulfates $KRE(SO_4)_2$ (Y, La-Lu), which agrees with results obtained from analysis of phase equilibrium diagrams of the $K_2SO_4-RE_2(SO_4)_3$ (Nd, Gd, Y) systems. We have established that the double sulfates $KRE(SO_4)_2$ crystallize in five structural types.

Double sulfates of La, Ce, Pr may provisionally be put in the first structural type. The double sulfates of the rare earth elements from Nd to Tb, inclusive, belong to the second type; Dy, Ho, Er, to the third. The compounds $KTm(SO_4)_2$ and $KY(SO_4)_2$ belong to the fourth structural type, and $KYb(SO_4)_2$ and $KLu(SO_4)_2$, to the fifth.

The analogous double sulfate of potassium and scandium described in Ref. (10-13) is isostructural with KFe(SO₄)₂ and KV(SO₄)₂ (14), as well as with a group of double sulfates of the type Na $M(SO_4)_2$ (15) M = Al, Ga, Cr, V, Fe, Rh.

[†] Original manuscript received in Russian. A copy is available on written request to the Editor.

Comparison of the X-ray data for the $KSc(SO_4)_2$ which we synthesized and for the double sulfates of $KRE(SO_4)_2$ indicated that the compounds are not isostructural. For further X-ray analyses of $KRE(SO_4)_2$, single crystals of the compounds $KPr(SO_4)_2$ and $KNd(SO_4)_2$, which belong to different structural types, were obtained. In studying these

TABLE I

crystals by Laue, oscillation, and reciprocallattice photographs, we established that $KRE(SO_4)_2$ (Pr and Nd) belong to the triclinic class with unit-cell parameters as follows:

KPr(SO₄)₂, a = 6.938 Å, b = 5.389 Å, c = 8.488 Å, $a = 91^{\circ}27'$, $\beta = 93^{\circ}51'$, $\gamma =$

TABLE II

RESULTS OF INDEXING X-RAY PATTERNS OF KNd(SO₄)₂

RESULTS	OF	INDEXING X-RAY $KPr(SO_4)_2$	PATTERNS OF	<i>I</i> / <i>I</i> ₀	hkl	$1/d^2 \times 10^4_{exp}$	$1/d^2 \times 10^4_{\text{theor}}$
				10	100	210.4	212.0
I/I_0	hkl	$1/d^2 \times 10^4_{exp}$	$1/d^2 \times 10^4_{\text{theor}}$	100	101	295.9	297.1
				50	101	375.2	374.9
5	001	138.2	140.0	70	011	463.9	463.8
10	100	207.8	208.4	100	002	495.2	495.8
100	10Ī	325.6	325.8		011		495.3
70	101	371.4	371.0	5	110	556.6	557.4
40	01Ī	473.6	474.3	5	110	575.7	577.8
30	011	493.3	494.9	5	111	648.2	647.1
15	110	537.8	540.0	5	111	657.4	658.2
15	002	559.8	560.7	5	111	760.0	756.4
	Ī10		565.9	5	102	788.3	785.7
30	Ī11	693.1	693.6	40	012	822.2	820.0
30	102	719.1	723.2	100	200	847.8	848.0
	111		712.9	50	012	884.1	882.9
	111		718.3	50	20 Ī	893.4	894.0
80	200	833.7	833.7	80	112	965.9	964.2
10	012	882.8	884.0	50	Ĩ12	1007	1006
100	20Ī	925.2	928.4	5	201	1050	1050
	012		925.2	100	1 Ī 2	1103	1100
5	201	1019	1019	80	112	1184	1183
100	11Ž	1034	1034		2 O 2		1188
2	Ī12	1100	1101		01Ž		1183
90	210	1151	1152	20	211	1369	1369
	112		1151	100	020	1419	1422
90	112	1163	1166		013		1424
2	210	1204	1204	5	103	1442	1444
2	20Ž	1306	1303		211		1441
	$\bar{2}11$		1309	5	113	1533	1529
70	211	1345	1348		212		1533
90	020	1377	1378	20	$\frac{2}{2}$ 1 2	1556	1555
	211		1379	5	120	1611	1614
5	103	1535	1536	5	120	1655	1655
_	021		1539	10	121	1701	1708
5	013	1572	1574	10	203	1725	1730
5	120	1611	1613		121		1731
10	121	1657	1657	10	022	1854	1855
2	121	1752	1755		113		1857
	121	1000	1751	5	300	1908	1908
15	113	1899	1899		301		1915
	022	1057	1897	E	212	1001	1907
2	203	1957	1958	3	004	1981	1983
2	301	2087	2084		022		1981

		42	l

Compound	a (Å)	b (Å)	c (Å)	æ	β	γ	V/Z (Å ³)
KLa(SO ₄) ₂	7.009	5.436	8.490	91°47′	93°30'	88°36'	161.343
$KCe(SO_4)_2$	6.976	5.416	8.478	91°38′	93°40′	88°30'	159.754
$KPr(SO_4)$	6.938	5.389	8.488	91°27′	93°51'	88°33'	158.235
KNd(SO ₄),	6.919	5.307	9.053	92°02′	96°52′	90°48′	164.891
KSm(SO ₄) ₁	6.893	5.341	8.972	92°16′	97°23′	90°56′	163.597
KEu(SO ₄) ₂	6.878	5.350	8.943	92°22′	97°30′	91°11′	162.908
KGd(SO ₄),	6.860	5.355	8.909	92°29′	97°33′	91°07′	162.009
KTb(SO ₄),	6.833	5.345	8.890	92°27'	97°37'	90°52'	160.696

TABLE III

88°33', Z = 2, $\rho_{exp} = 3.81$, $\rho_{theor} = 3.90$, the space group P1;

KNd(SO₄)₂, a = 6.919 Å, b = 5.307 Å, c = 9.053 Å, $a = 92^{\circ}02'$, $\beta = 96^{\circ}52'$, $\gamma = 90^{\circ}48'$, Z = 2, $\rho_{exp} = 3.70$, $\rho_{theor} = 3.78$, the space group $P\overline{1}$.

Tables I and II give the indexing of the powder lines for these compounds as carried out with reference to the position and intensities of the X-ray reflections in the development of layer lines h0l-h2l. We have also

TABLE IV

X-RAY DATA FOR DOUBLE SULFATES^a

$KEr(SO_4)_2$		KTr	$n(SO_4)_2$	KYb(SO ₄) ₂	
I/I ₀	d	<i>I/I</i> ₀	d	<i>I/I</i> 0	d
10	7.326	100	6.0177	100	8.473
10	6.707	40	4.3708	15	5.0634
100	5.3104	70	4.2588	60	4.3454
20	4.7210	100	3.2063	15	4.2307
30	4.5208	40	3.0826	30	3.8404
10	4.4534	100	3.0054	70	3.7761
20	4.3708	10	2.5601	40	3.3433
30	4.2148	10	2.5418	70	3.2476
90	3.3756	10	2.4766	70	3.0578
100	3.3384	10	2.3041	10	3.0253
80	3.2268	20	2.0942	90	2.9135
80	3.1185			10	2.5474
80	3.0930			10	2.4000
100	2.9780			10	2.2542
60	2.7460			10	2.1129
100	2.7168			10	2.0624
10	2.2586				
15	2.1552				

^{*a*} Only lines with $I/I_0 \ge 10$ are shown.

indexed the X-ray patterns of the double sulfates $KLa(SO_4)_2$ and $KCe(SO_4)_2$, both of which crystallize with $KPr(SO_4)_2$ in one structural type, as well as the double sulfates $KSm(SO_4)_2$, $KEu(SO_4)_2$, $KGd(SO_4)_2$, and $KTb(SO_4)_2$, which are isostructural with $KNd(SO_4)_2$. The parameters of the unit cells are shown in Table III.

As is seen in Table III, with an increase in the atomic number of the element and, consequently, with a decrease in the radius of the rare earth element an equivalent decrease of the unit-cell volume takes place.

In Table IV are presented the interplanar distances for the double sulfates $KEr(SO_4)_2$, $KTm(SO_4)_2$, and $KLu(SO_4)_2$, which belong to other structural types.

TABLE V

DECOMPOSITION TEMPERATURE OF	ł
DOUBLE SULFATES $KRE(SO_4)_2$	

KRE(SO ₄) ₂	<i>t</i> (°C)
KPr(SO ₄) ₂	930
$KNd(SO_4)$	930
$KSm(SO_4)_2$	830
$KEu(SO_4)_2$	800
KGd(SO ₄),	800
KTb(SO ₄) ₂	720
$KDy(SO_4)$	700
$KHo(SO_4)$	700
$KEr(SO_4)_2$	620
$KTm(SO_4)_2$	500
KYb(SO ₄),	500
$K Lu(SO_4)_2$	480
KY(SO ₄) ₂	420

Thermographic and gravimetric analyses of the indicated compounds showed that all compounds obtained in the heating decompose in the solid phase. The character of the decomposition of the compounds was checked by X-ray analysis. The double sulfates $KPr(SO_4)_2$ and $KNd(SO_4)_2$ decompose with formation of $K_7 R E_3 (SO_4)_8$ and $R E_2 (SO_4)_3$ phases. The compounds $KRE(SO_4)_2$ (RE = Sm-Lu, Y) on decomposition in the solid phase, form a biphase mixture of $K_4 R E_2(SO_4)$, and $RE_2(SO_4)_3$. Upon further heating, fusion of the $K_7RE_3(SO_4)_8$ and $K_4RE_2(SO_4)_5$ phases¹ decomposition of $RE_2(SO_4)_3$ and and $RE_2O_2SO_4$ takes place. The phases formed in the decomposition of $KRE(SO_4)_2$ were synthesized individually for each rare earth element and their identity was proven on the X rays.

The decomposition temperatures of the double sulfates $KRE(SO_4)_2$ are shown in Table V. They decrease with increase in the atomic number of the rare earth element.

¹ The chemical compositions of the phases corresponding to single-phase specimens are indicated.

References

- I. V. SHAKHNO, A. P. BELOUSOVA, M. D. PAVKINA, AND V. E. PLIUSHCHEV, Zh. Neorg. Khim. 12, 2500 (1967).
- L. D. ISKHAKOVA AND V. E. PLIUSHCHEV, Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol. 13, 929 (1970).
- 3. L. D. ISKHAKOVA AND V. E. PLIUSHCHEV, Zh. Neorg. Khim. 15, 2526 (1970).
- L. D. ISKHAKOVA AND V. E. PLIUSHCHEV, Izv. Vyssh. Ucheb. Zaved., Khim. Khim Tekhnol. 13, 1233 (1970).
- 5. L. D. ISKHAKOVA, V. E. PLIUSHCHEV, AND L. A. PEREZHOGINA, Zh. Neorg. Khim. 16, 1836 (1971).
- A. I. BARABASH, L. L. ZAITSEVA, AND V. S. IL'JASHENKO, Zh. Neorg. Khim. 17, 2001 (1972).
- 7. V. S. IL'JASHENKO, A. I. BARABASH, AND L. L. ZAITSEVA, Zh. Neorg. Khim. 18, 2841 (1973).
- L. D. ISKHAKOVA AND V. E. PLIUSHCHEV, Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol. 15, 484 (1972).
- 9. O. V. KUDIN, V. A. EFREMOV, A. N. PEKROVSKII, P. A. DEGTIAREV, AND V. K. TRUNOV, Zh. Neorg. Khim., in press.
- 10. V. M. SHATSKII, L. N. KOMISSAROVA, AND B. I. BASHKOV, Zh. Neorg. Khim. 15, 1362 (1972).
- L. G. KOROTAEVA, V. G. REMIZOV, A. G. DUDAREVA, AND KH. ALEKHANDRO ARAGON, Zh. Neorg. Khim. 20, 2197 (1975).
- 12. R. PERRET, Bull. Soc. Fr. Mineral. Cristallogr. 93, 493 (1970).
- 13. R. PERRET, Bull. Soc. Fr. Mineral. Cristallogr. 94, 84 (1971).
- 14. C. O. HUTTON, Amer. Mineral. 44, 1105 (1959).
- R. PERRET AND P. COUCHOT, C. R. Acad. Sci. Paris 274, 366 (1972).